Cox regression with additive model with interaction
wrapper_cox_regression_core_interaction.Rd
Cox regression with additive model with interaction
Usage
wrapper_cox_regression_core_interaction(
data,
tte_var,
censor_var,
interaction1_vars,
interaction2_var,
covariate_vars = NULL,
strata_vars = NULL,
keep_obs = TRUE,
variable_names = NULL,
caption = NULL,
print_pvalues = TRUE,
print_adjpvalues = TRUE
)
wrapper_cox_regression_core_interaction_strat(
data,
tte_var,
censor_var,
interaction1_vars,
interaction2_var,
covariate_vars = NULL,
strata_vars = NULL,
strat1_var = NULL,
strat2_var = NULL,
variable_names = NULL,
caption = NULL,
print_pvalues = TRUE,
print_adjpvalues = TRUE
)
Arguments
- data
Data frame.
- tte_var
Name of the time-to-event variable. This variable must be numeric.
- censor_var
Name of the censor variable. It has to be numeric and encode 1 for event and 0 for censor.
- interaction1_vars
Names of the first interaction variables. They would correspond to biomarkers.
- interaction2_var
Name of the second interaction variable. It would correspond to the treatment arm.
- covariate_vars
Vector with names of covariates that are included in the formula of the simple additive model: `~ covariate_vars[1] + covariate_vars[2] + covariate_vars[3] + ....`
- strata_vars
Vector with names of covariates that are used as strata.
- variable_names
Named vector with variable names. If not supplied, variable names are created by replacing in column names underscores with spaces.
- caption
Caption for the table with results.
- print_pvalues
Logical. Whether to print p-values.
- print_adjpvalues
Logical. Whether to print adjusted p-values.
- strat1_var
Name of the second stratification variable.
- strat2_var
Name of the second stratification variable used for splitting the data.
Examples
data(bdata)
data <- bdata
data$GeneA_cat2 <- wrapper_cut_2groups(data$GeneA)
data$GeneB_cat2 <- wrapper_cut_2groups(data$GeneB)
tte_var <- "PFS"
censor_var <- "PFS_Event"
interaction1_vars <- c("GeneA_cat2", "GeneB_cat2")
interaction2_var <- "Treatment_Arm"
covariate_vars <- c("IPI", "Cell_Of_Origin")
x <- wrapper_cox_regression_core_interaction(data, tte_var = tte_var, censor_var = censor_var, interaction1_vars = interaction1_vars, interaction2_var = interaction2_var, covariate_vars = covariate_vars)
boutput(x)
#> Covariate1 Effect1 Covariate2 Effect2 Total N HR HR 95% CI
#> 1 GeneA cat2 high vs low Treatment Arm TRT vs CTRL 391 1.02 (0.54 - 1.91)
#> 2 GeneB cat2 high vs low Treatment Arm TRT vs CTRL 391 0.66 (0.35 - 1.25)
#> P-value Adj. P-value
#> 1 0.9595 0.9595
#> 2 0.2000 0.4000