Skip to contents
-
bkable()
bforest()
bresults()
`bresults<-`()
boutput()
`boutput<-`()
bcaption()
`bcaption<-`()
bheader()
`bheader<-`()
dim(<Bclass>)
nrow(<Bclass>)
ncol(<Bclass>)
colnames(<Bclass>)
`colnames<-`(<Bclass>)
rownames(<Bclass>)
`rownames<-`(<Bclass>)
`[[`(<Bclass>,<ANY>)
`$`(<Bclass>)
`[`(<Bclass>,<ANY>,<ANY>,<ANY>)
rbind(<Bclass>)
cbind(<Bclass>)
- Bclass object
-
compute_lower_whisker()
- Compute lower whisker
-
compute_trim_values()
apply_trim_values()
- Compute trimming values and trim data to a specified range
-
compute_upper_whisker()
- Compute upper whisker
-
csv2eSet()
- Load content from a CSV file into an eSet
-
cut2()
- My version of cut
-
densVals()
- Density Values for Smooth Density Plots
-
duplicated2()
- My version of duplicated
-
eSet2csv()
- Save content of an eSet into a CSV file
-
fig.rename()
- Helper function to rename plots generated by the code chunks
-
format_colors_cat()
format_colors()
format_colors_cat_strata()
- Format or create colors for a vector with categorical values
-
format_colors_num()
- Generate colors for ComplexHeatmap for continuous variables
-
format_shapes()
- Format or create shapes for a vector with categorical values
-
format_variable_names()
- Create variable names
-
isValidAndUnreservedName()
- Check if a vector consists of valid names
-
jaccard_matrix()
- Compute Jaccard similarity for pairs of covariates
-
or_matrix()
- Compute odds ratios for pairs of covariates
-
order2()
- My version of order for data frame
-
subchunkify()
- My version of subchunkify
-
wrapper_HR_dotplot
- Dot plot with HR and 95 wrapper_HR_dotplot( x, biomarker_var = "biomarker", hr_prefix = "HR", hr_ci_lower_prefix = "HR.CI95.lower", hr_ci_upper_prefix = "HR.CI95.upper", pval_prefix = "P.Value", adjp_prefix = "adj.P.Val", sep = "_", pval = 0.05, title = "", color_low = "#42399B", color_mid = "white", color_high = "#D70131", trim_values = c(0.25, 4), trim_prop = NULL, trim_range = NULL, ceiling = FALSE, radius_range = c(3, 10), legend_position = "right", axis_text_y_size = NULL, axis_text_y_width = 80, title_size = NULL ) xTopTable with Cox regression results Dot plot with HR and 95
-
wrapper_KM_plot_biomarker()
- KM plots with biomarker effect per treatment arm
-
wrapper_KM_plot_core()
wrapper_KM_plot_core_strat()
- KM plot
-
wrapper_KM_plot_interaction()
- KM plot with curves per biomarker and treatment in a single panel
-
wrapper_KM_plot_treatment()
- KM plot with treatment effect per biomarker subgroup
-
wrapper_NES_barplot()
- Bar plot with NES from GSEA
-
wrapper_NES_barplot2()
- Bar plot with NES from GSEA
-
wrapper_bar_plot_biomarker()
- Bar plot with biomarker effect on response per treatment arm
-
wrapper_bar_plot_core()
wrapper_bar_plot_core_strat()
- Barplot
-
wrapper_bar_plot_treatment()
- Bar plot with treatment effect on response per biomarker subgroup
-
wrapper_bar_plot_yvars_core_strat()
- Barplots
-
wrapper_box_plot_core()
wrapper_box_plot_core_strat()
- Boxplot
-
wrapper_box_plot_yvars_core_strat()
- Boxplots
-
wrapper_bresults_to_topTable()
- Convert results from Cox regression into a topTable
-
wrapper_calculate_sample_logFC()
- Calculate logFC for expression data that will be plotted in a heatmap
-
wrapper_cameraPR()
- Run CAMERA
-
wrapper_cameraPR_core()
- Run CAMERA
-
wrapper_characteristics_bep()
- Table with distribution summary for a list of covariates for ITT and BEP
-
wrapper_characteristics_core()
- Table with distribution summary for categorical and numerical covariates
-
wrapper_characteristics_core_cat()
- Table with distribution summary for a categorical covariate
-
wrapper_characteristics_core_num()
- Table with distribution summary for a numerical covariate
-
wrapper_cooccurence_dotplot()
- Dotplot with cooccurence odds ratios
-
wrapper_cooccurence_heatmap()
- Heatmap of Jaccard similarity between pairs of covariates
-
wrapper_cox_regression_biomarker()
- Cox regression estimating biomarker effect
-
wrapper_cox_regression_core_interaction()
wrapper_cox_regression_core_interaction_strat()
- Cox regression with additive model with interaction
-
wrapper_cox_regression_core_simple()
wrapper_cox_regression_core_simple_strat()
- Cox regression with simple additive model
-
wrapper_cox_regression_interaction()
- Cox regression estimating interaction effect between biomaker and treatment
-
wrapper_cox_regression_treatment()
- Cox regression estimating treatment effect within biomarker subgroups
-
wrapper_cut_2groups()
wrapper_cut_2groups_strat()
- Stratify data into two groups
-
wrapper_cut_median()
wrapper_cut_median_strat()
- Dichotomize data by median
-
wrapper_cut_quartiles()
wrapper_cut_quartiles_strat()
- Stratify data into quartiles
-
wrapper_cut_quintiles()
wrapper_cut_quintiles_strat()
- Stratify data into quintiles
-
wrapper_cut_tertiles()
wrapper_cut_tertiles_strat()
- Stratify data into tertiles
-
wrapper_deside_tests()
- Create a summary variable indicating significant genes
-
wrapper_dispaly_significant_camera()
- Display significantly enriched gene sets
-
wrapper_dispaly_significant_genes()
- Display significantly DE genes
-
wrapper_dispaly_significant_gsea()
- Display significantly enriched gene sets
-
wrapper_dispaly_significant_ora()
- Display significant pathways for a given contrast and direction
-
wrapper_error_line_plot_core()
wrapper_error_line_plot_core_strat()
- Error line plot
-
wrapper_extract_from_topTable()
- Extract given statistics for all contrasts available in merged topTable
-
wrapper_fishers_test()
- Fisher's test
-
wrapper_fishers_test_core()
wrapper_fishers_test_core_strat()
- Fisher's test
-
wrapper_gene_expression_heatmap()
- Heatmap with logFC or z-score normalized gene expression
-
wrapper_gsea()
- Run GSEA
-
wrapper_gsea_core()
- Run GSEA
-
wrapper_gsea_plot()
- Plot GSEA statistics ranks
-
wrapper_gsea_plot_core()
- Plot GSEA statistics ranks
-
wrapper_kruskal_test()
- Kruskal-Wallis H test or Wilcoxon Rank-Sum test
-
wrapper_kruskal_test_core_col_cat()
wrapper_kruskal_test_core_col_cat_strat()
- Kruskal-Wallis H test or Wilcoxon Rank-Sum test (know also as Wilcoxon-Mann-Whitney test) or t-test
-
wrapper_kruskal_test_core_col_num()
wrapper_kruskal_test_core_col_num_strat()
- Kruskal-Wallis H test or Wilcoxon Rank-Sum test (know also as Wilcoxon-Mann-Whitney test) or t-test
-
wrapper_line_plot_core()
wrapper_line_plot_core_strat()
- Line plot
-
wrapper_lm()
- Fit a linear model
-
wrapper_lmer()
- Fit a linear mixed model
-
wrapper_logFC_dotplot()
- Dot plot with logFC and p-values for multiple contrasts
-
wrapper_logFC_heatmap()
- Heatmap with logFC for multiple contrasts
-
wrapper_log_rank_test_biomarker()
- Log-rank test testing biomarker effect
-
wrapper_log_rank_test_core_simple()
wrapper_log_rank_test_core_simple_strat()
- Log-rank test
-
wrapper_log_rank_test_treatment()
- Log-rank test testing treatment effect within biomarker subgroups
-
wrapper_logistic_regression_biomarker()
- Logistic regression estimating biomarker effect
-
wrapper_logistic_regression_core_interaction()
wrapper_logistic_regression_core_interaction_strat()
- Logistic regression with additive model with interaction
-
wrapper_logistic_regression_core_simple()
wrapper_logistic_regression_core_simple_strat()
- Logistic regression with simple additive model
-
wrapper_logistic_regression_interaction()
- Logistic regression estimating effect of interaction between biomarker and treatment
-
wrapper_logistic_regression_treatment()
- Logistic regression estimating treatment effect within biomarker subgroups
-
wrapper_max_text_height()
- Maximum height of text
-
wrapper_max_text_width()
- Maximum width of text
-
wrapper_merge_topTables()
- Merge topTable results for multiple contrasts
-
wrapper_ncc_cox_regression_core_predictive()
- Cox regression with additive model with interactions for Nested Case-Control NCC study
-
wrapper_ncc_cox_regression_core_predictive2()
- Cox regression with additive model with interactions for Nested Case-Control NCC study
-
wrapper_ncc_cox_regression_core_prognostic()
- Cox regression with simple additive model for Nested Case-Control NCC study
-
wrapper_ora()
- Over-representation analysis (ORA)
-
wrapper_ora_core()
- Over-representation analysis (ORA)
-
wrapper_ora_dotplot_multiple()
- Dot plot with ORA results for multiple contrasts
-
wrapper_ora_dotplot_single()
- Dot plot with ORA results for a single contrast
-
wrapper_pearsons_test_biomarker()
- Testing biomarker effect on response with Pearson's Chi-squared test or Cochran-Mantel-Haenszel Chi-Squared Test
-
wrapper_pearsons_test_core()
wrapper_pearsons_test_core_strat()
- Pearson's Chi-squared test or Fisher's exact test or Cochran-Mantel-Haenszel Chi-Squared Test
-
wrapper_pearsons_test_treatment()
- Testing treatment effect on response with Pearson's Chi-squared test or Cochran-Mantel-Haenszel Chi-Squared Test
-
wrapper_point_plot_core()
wrapper_point_plot_core_strat()
- Scatter plot
-
wrapper_print_plot_grid()
- Spit a list of plots into chunks and plot them in a grid layout
-
wrapper_read_gmt()
- Read gmt file and return a list of genes
-
wrapper_renumber_clusters()
- Renumber clusters based on their splitting so they can be traced
-
wrapper_signature_heatmap()
- Heatmap with signature and expression of genes defining that signature
-
wrapper_summarized_expression_dotplot()
- Dotplot of gene expression summarized per group
-
wrapper_summarized_expression_heatmap()
- Heatmap of gene expression summarized per group
-
wrapper_tile_plot1_core()
wrapper_tile_plot2_core()
- Tile plot
-
wrapper_write_gmt()
- Write a list of genes into a gmt file